Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells

نویسندگان

  • Marianne Geiser
  • Barbara Rothen-Rutishauser
  • Nadine Kapp
  • Samuel Schürch
  • Wolfgang Kreyling
  • Holger Schulz
  • Manuela Semmler
  • Vinzenz Im Hof
  • Joachim Heyder
  • Peter Gehr
چکیده

High concentrations of airborne particles have been associated with increased pulmonary and cardiovascular mortality, with indications of a specific toxicologic role for ultrafine particles (UFPs; particles < 0.1 microm). Within hours after the respiratory system is exposed to UFPs, the UFPs may appear in many compartments of the body, including the liver, heart, and nervous system. To date, the mechanisms by which UFPs penetrate boundary membranes and the distribution of UFPs within tissue compartments of their primary and secondary target organs are largely unknown. We combined different experimental approaches to study the distribution of UFPs in lungs and their uptake by cells. In the in vivo experiments, rats inhaled an ultrafine titanium dioxide aerosol of 22 nm count median diameter. The intrapulmonary distribution of particles was analyzed 1 hr or 24 hr after the end of exposure, using energy-filtering transmission electron microscopy for elemental microanalysis of individual particles. In an in vitro study, we exposed pulmonary macrophages and red blood cells to fluorescent polystyrene microspheres (1, 0.2, and 0.078 microm) and assessed particle uptake by confocal laser scanning microscopy. Inhaled ultrafine titanium dioxide particles were found on the luminal side of airways and alveoli, in all major lung tissue compartments and cells, and within capillaries. Particle uptake in vitro into cells did not occur by any of the expected endocytic processes, but rather by diffusion or adhesive interactions. Particles within cells are not membrane bound and hence have direct access to intracellular proteins, organelles, and DNA, which may greatly enhance their toxic potential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Calcium Fluoride Ultrafine Particles for the Preparation of Integral Asymmetric Cellulose Acetate/Calcium Fluoride Membranes

The present work reports on the synthesis of cellulose acetate (CA) asymmetric membranes with the incorporation of inorganic fluorides, CaF2 particles. These fillers of polymeric composites can, according to the literature, promote the ordering of the polymer matrix, which can lead to interesting permeation properties. In order to achieve that, fluorite (CaF2 ) fine particles were prepared by a...

متن کامل

Negligible clearance of ultrafine particles retained in healthy and affected human lungs.

Ambient particles are believed to be a specific health hazard, although the underlying mechanisms are not fully understood. There are data in the literature indicating fast and substantial systemic uptake of particles from the lung. The present authors have developed an improved method to produce ultrafine particles with more stable radiolabelling and defined particle size range. Fifteen subjec...

متن کامل

Current hypotheses on the mechanisms of toxicity of ultrafine particles.

PM10 is a complex mixture of particles and we have focused here on the ultrafine component, i.e. particles with a diameter of less than 100 nm. In PM10 this fraction is mostly composed of combustion-derived, carbon-centred particles with associated hydrocarbons and metals. Progress in understanding the effects of ultrafine particles in the lungs has been achieved largely through the use of surr...

متن کامل

Air pollution and retained particles in the lung.

Epidemiologic evidence associates particulate air pollution with cardiopulmonary morbidity and mortality. The biological mechanisms underlying these associations and the relationship between ambient levels and retained particles in the lung remain uncertain. We examined the parenchymal particle content of 11 autopsy lungs from never-smoking female residents of Mexico City, a region with high am...

متن کامل

Ultrafine carbon particles induce interleukin-8 gene transcription and p38 MAPK activation in normal human bronchial epithelial cells.

Epidemiological studies suggest that ultrafine particles contribute to particulate matter-induced adverse health effects. Interleukin (IL)-8 is an important proinflammatory cytokine in the human lung that is induced in respiratory cells exposed to a variety of environmental insults, including ambient air ultrafine particles. In this study, we examined the effect of a model ultrafine particle on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 113  شماره 

صفحات  -

تاریخ انتشار 2005